Assimilation of Multiresolution Radiation Products into a Downwelling Surface Radiation Model

Bart Forman
NASA Postdoctoral Program (NPP) Fellow

GMAO Seminar Series October 12, 2010

"Water. It's about water."

Response by former Professor and Pulitzerwinning author Wallace E. Stegner when asked what a newcomer should know about California

Hydrologic Cycle

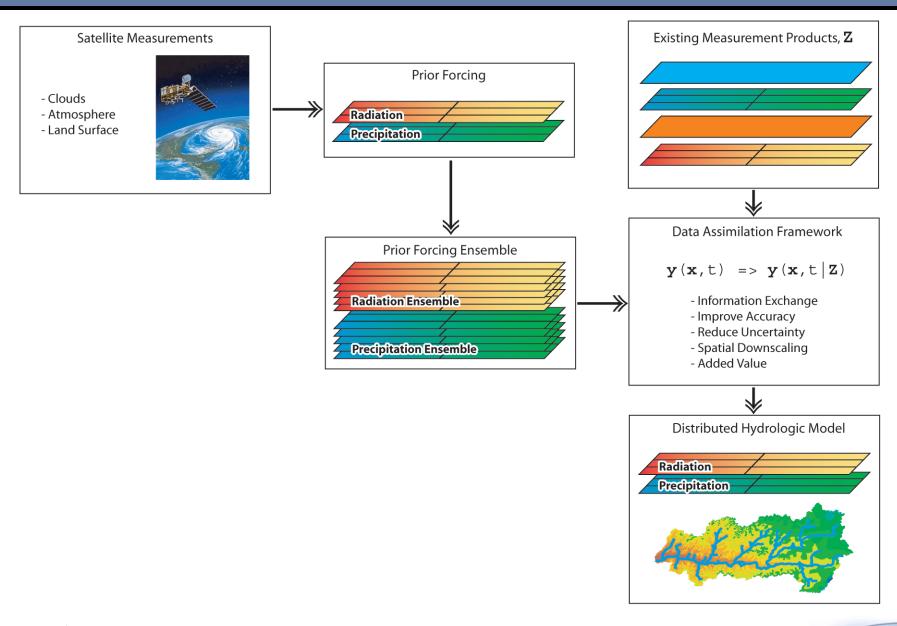


- Project Motivation
- II. Satellite-based Downwelling Radiation Model
- III. Ensemble-based Data Assimilation Scheme
- IV. Summary of Recent Research
- v. Future Work

Project Motivation

- Improve distributed estimates of hydrologic states / fluxes (and uncertainty)
 - Physically-consistent, cloud-coupled forcing
 - Utilize satellite-borne instruments
 - Lead to improved characterization of the key modes of variability in land surface states
 - Applicable in physically-based, distributed hydrologic model and/or land surface model applications

Project Approach



- Project Motivation
- II. Satellite-based Downwelling Radiation Model
- III. Ensemble-based Data Assimilation Scheme
- IV. Summary of Recent Research
- v. Future Work

Brief Overview

- Question: Can a relatively simple model capture space-time patterns in radiative flux?
- Satellite-derived, cloud-coupled estimates of total downwelling radiation
 - Merger of VISST, AIRS, and MODIS products
 - High-resolution (~4 km, ~hourly)
 - Compares well to ground-based radiometer network observations
- Computationally efficient; intended use in ensemble data assimilation scheme

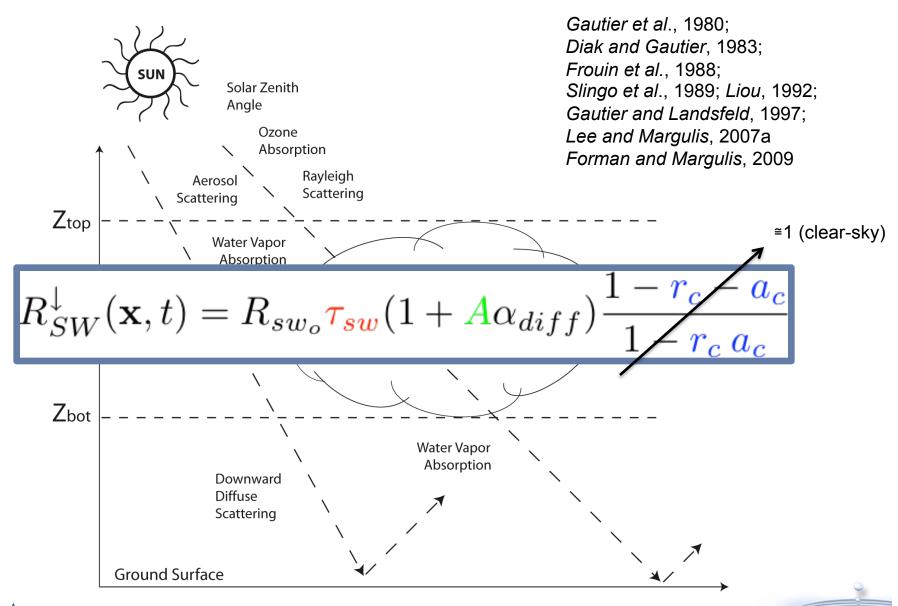
Satellite-based Inputs

				Approx		
Product	Required	Orbit	Spectral	Space	Time	-
Name	State/Parameter	Type	Range	$[\mathrm{km}]$	[days]	Model
AIRS	Near-surface air	Р	IR, MW,	~ 50	$\sim 1/2$	LW
	temperature and humidity		NIR, VIS			
MODIS	Black-sky albedo	P	VIS	~ 1	16	sw
	White-sky albedo					
MODIS	Total precipitable water	P	IR	~ 5	$\sim 1/2$	sw
MODIS	Near-surface air	P	IR, NIR	~ 5	$\sim 1/4$	LW
	temperature and humidity					
VISST	Effective cloud height	\mathbf{G}	IR, VIS	~ 4	$\sim 1/48$	LW, SW
	Effective cloud temperature					
	Effective cloud pressure					
	Cloud base height					
	Cloud base pressure					
	Liquid/ice cloud phase					
	Liquid/ice water path					
	Effective hydrometeor size					

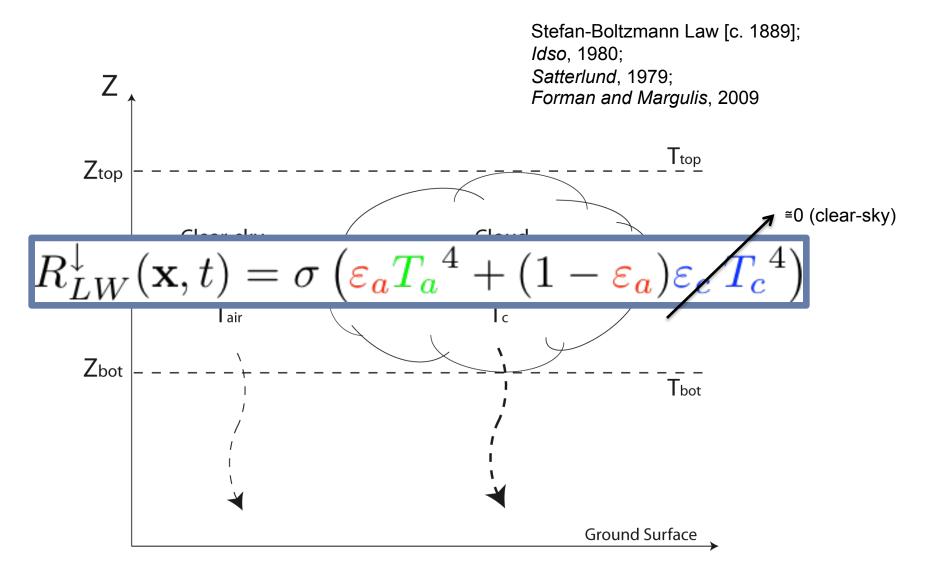
G=Geostationary; IR=Infrared; LW=Longwave; MW=Microwave; NIR=Near Infrared; P=Polar; SW=Shortwave; VIS=Visible

Forman and Margulis [2009]

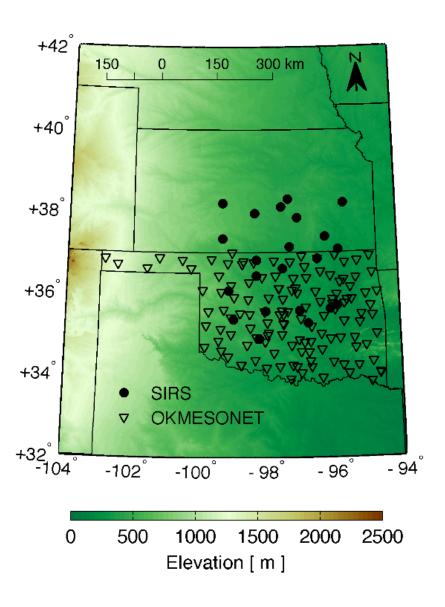
Shortwave Conceptual Model



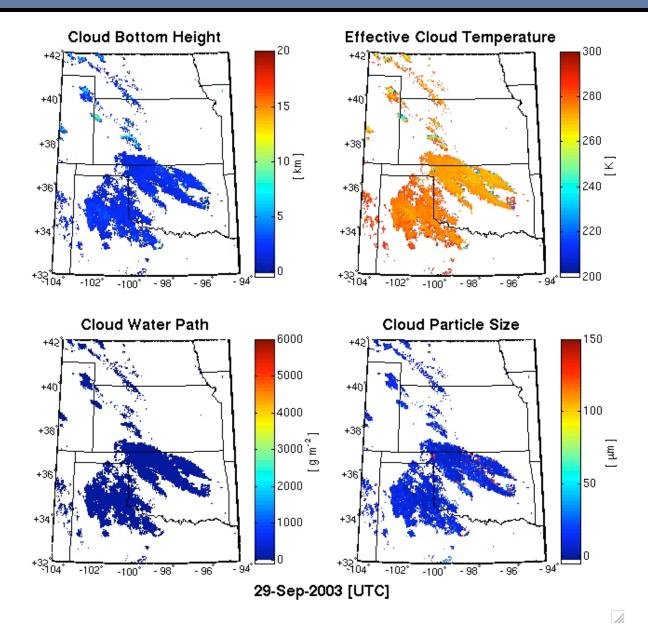
Longwave Conceptual Model



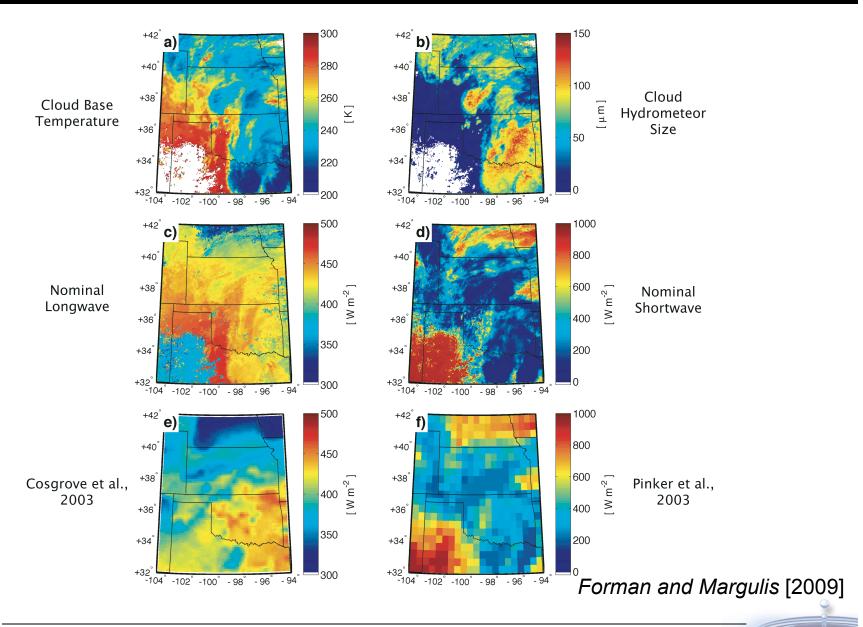
Model Application and "Verification"



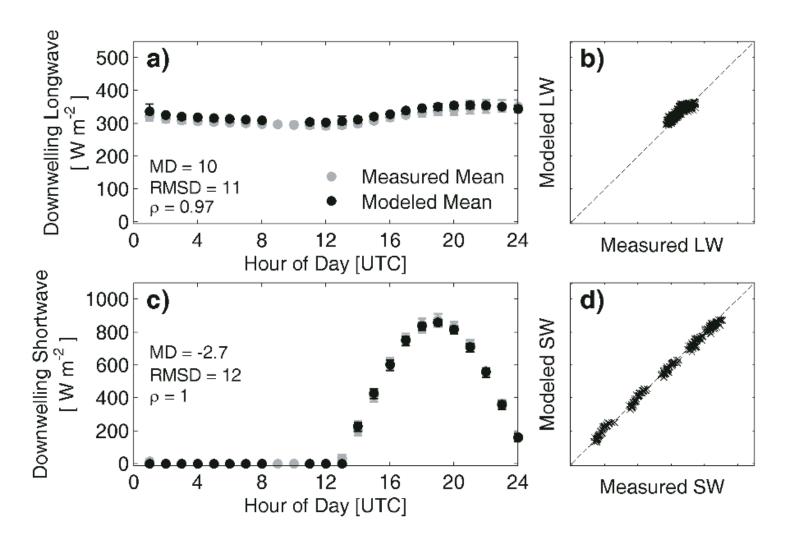
Cloud States via VISST



Nominal Radiation Results

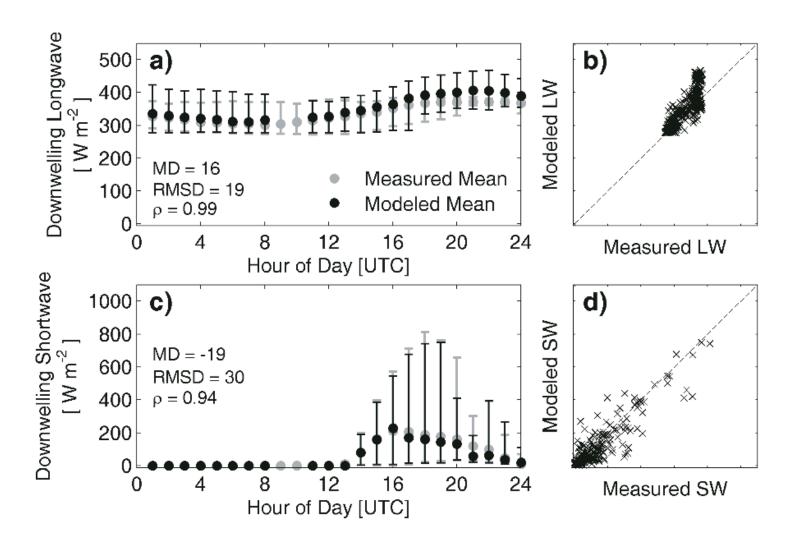


Clear-sky Example (22 stations)



Forman and Margulis [2009]

Cloudy-sky Example (21 stations)



Forman and Margulis [2009]

Summary of Findings

- Development of satellite-derived, cloudcoupled downwelling radiative fluxes
 - Requires no ground-based inputs
- High-resolution (space and time)
- Computational efficiency lends itself to ensemble-based framework
- Comparable (or reduced) error to advanced, readily-available products

- Project Motivation
- II. Satellite-based Downwelling Radiation Model
- III. Ensemble-based Data Assimilation Scheme
- IV. Summary of Recent Research
- v. Future Work

Brief Overview

- Question: Can an ensemble data assimilation scheme capture (and reduce) radiative flux uncertainty?
 - Perturb atmospheric, land surface, and cloud states (satellite inputs)
 - Spatially-correlated, cross-correlated
 - Prior (unconditioned) ensemble
- Condition prior estimate using a Bayesian conditioning scheme
 - Merge model with measurements
- Reduce uncertainty while adding value

Uncertainty Characterization

Nominal Simulation

$$\mathbf{y}(\mathbf{x},t) = \begin{bmatrix} R_{LW}^{\downarrow}(\mathbf{x},t) \\ R_{SW}^{\downarrow}(\mathbf{x},t) \end{bmatrix} = \mathcal{A}\left[\mathbf{u}(\mathbf{x},t),t\right]$$

Prior Replicate

$$\mathbf{y}_{j}(\mathbf{x},t) = \begin{bmatrix} R_{LW,j}^{\downarrow}(\mathbf{x},t) \\ R_{SW,j}^{\downarrow}(\mathbf{x},t) \end{bmatrix} = \mathcal{A} \left[\mathbf{u}_{j}(\mathbf{x},t), t \right] \text{ for } j \in [1 N]$$

Input Uncertainty

$$\mathbf{u} \sim p_{\mathbf{u}}(\mathbf{u}); \quad \mathbf{u}_j \leftarrow p_{\mathbf{u}}(\mathbf{u})$$

Multiplicative Perturbations

$$\gamma(\mathbf{x}, \mathbf{L}) \sim LN(\mathbf{1} \mathbf{C}_{\gamma}(\mathbf{x}))$$

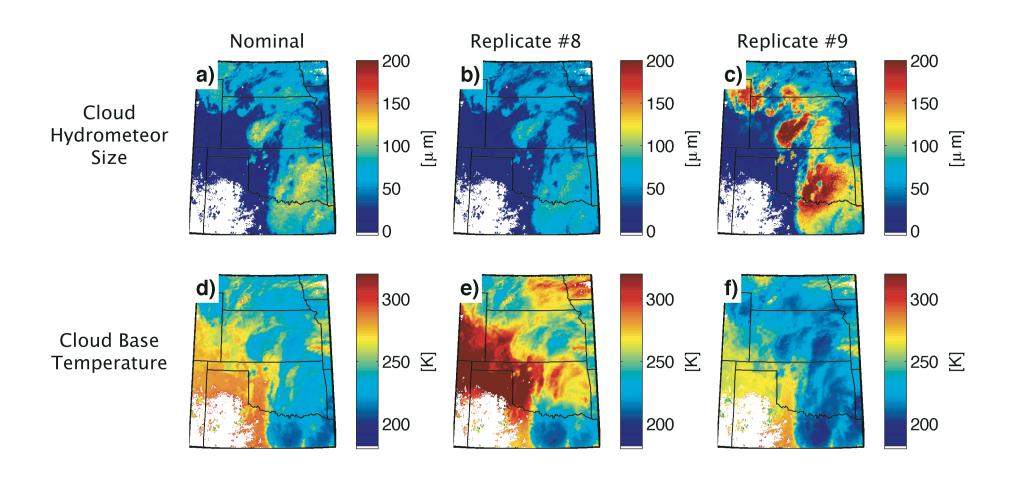
 $\mathbf{u}_{i}(\mathbf{x}, t) = \mathbf{u}(\mathbf{x}, t) \cdot \gamma_{i}(\mathbf{x}, \mathbf{L})$

Data-derived Covariance

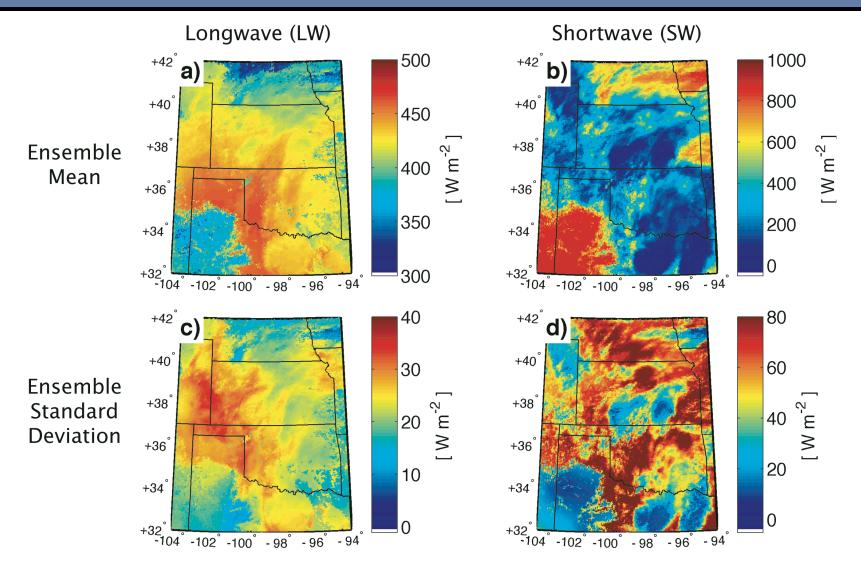
	A	AS	q_a	RS	T_a	WV	HS	T_c	WP
A	1	0	0	0	0	0	0	0	0
AS	0	1	-0.24	0.8	-0.44	-0.45	0	0	0
q_a	0	-0.24	1	-0.24	-0.18	0.18	0	0.16	-0.11
RS	0	0.8	-0.24	1	0	-0.4	0	0	0
T_a	0	-0.44	-0.18	0	1	0.24	0	0	0
WV	0	-0.45	0.18	-0.4	0.24	1	0	0	0
HS	0	0	0	0	0	0	1	-0.67	0.35
T_c	0	0	0.16	0	0	0	-0.67	1	-0.3
WP	0	0	-0.11	0	0	0	0.35	-0.3	1
a A A 11	ada	. 10 /	\ orogol	acattani	no coof	Goiont.	a Ain	anaoifia	humid

 ^{a}A , Albedo; AS, Aerosol scattering coefficient; q_{a} , Air specific humidity; RS, Rayleigh scattering coefficient; T_{a} , Air temperature; WV, Column-integrated water vapor; HS, Cloud hydrometeor size; T_{c} , Cloud-base temperature; WP, Cloud water path

Cross-correlated, Spatially-correlated



Prior (Unconditioned) Results



Forman and Margulis [Part 1, In Press]

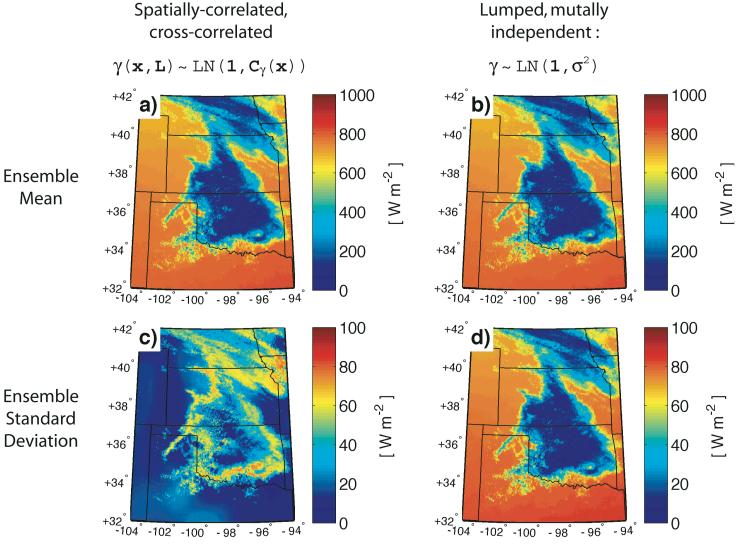
Realistic Uncertainty Structure

Forman and Margulis, Part 1, In Press

e.g. Carpenter and Georgakakos, 2004

Lee and Margulis, 2007

Durand et al., 2008



Data Assimilation Scheme

Prior Replicate:

$$\mathbf{y}_{j}^{-}(\mathbf{x},t) = \mathcal{A}\left[\mathbf{u}_{j}(\mathbf{x},t),t\right] \text{ for } j \in [1\ N]$$

Bayesian Merging Scheme:

$$\mathbf{y}_{j}^{+}(\mathbf{x}, t|Z) = \mathbf{y}_{j}^{-}(\mathbf{x}, t) + \mathbf{K} \left[Z + v_{j} - \mathcal{M} \left(\mathbf{y}_{j}^{-}(\mathbf{x}, t), t \right) \right]$$

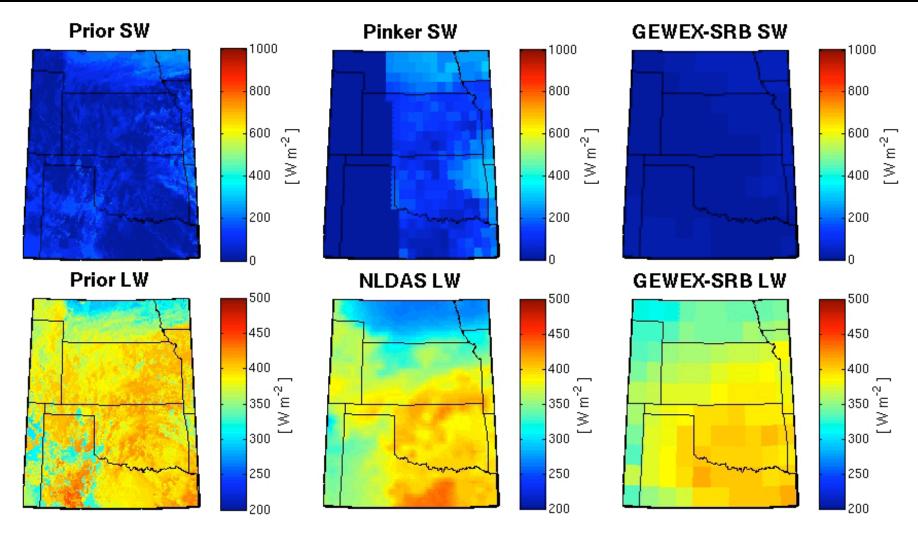
Where

Gain Matrix: $\mathbf{K} = \mathbf{C}_{yz}[\mathbf{C}_{zz} + \mathbf{C}_v]^{-1}$

Measurement (plus error): $Z + v_j$

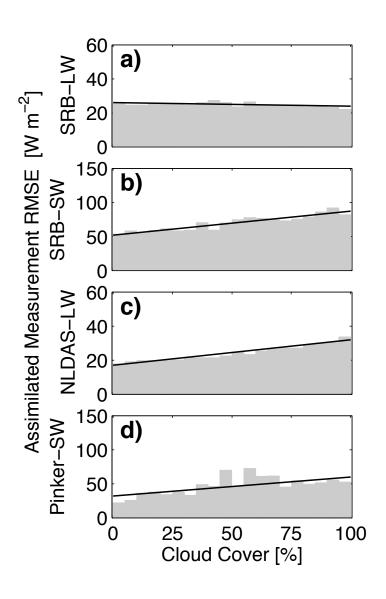
Measurement Model: $\mathcal{M}\left(\mathbf{y}_{j}^{-}(\mathbf{x},t),t\right)$

Products for Assimilation

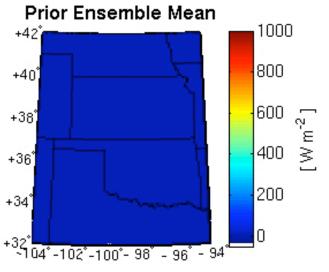


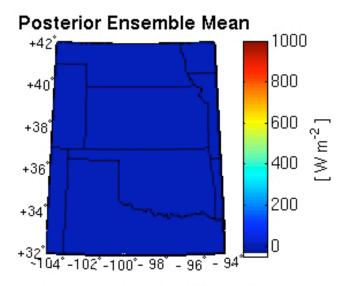
19-Aug-2004 13:15:00 [UTC]

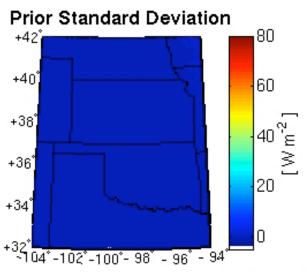
Measurement Error Models

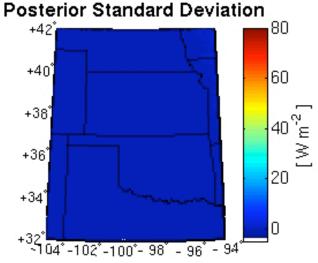


Conditioned Shortwave Example



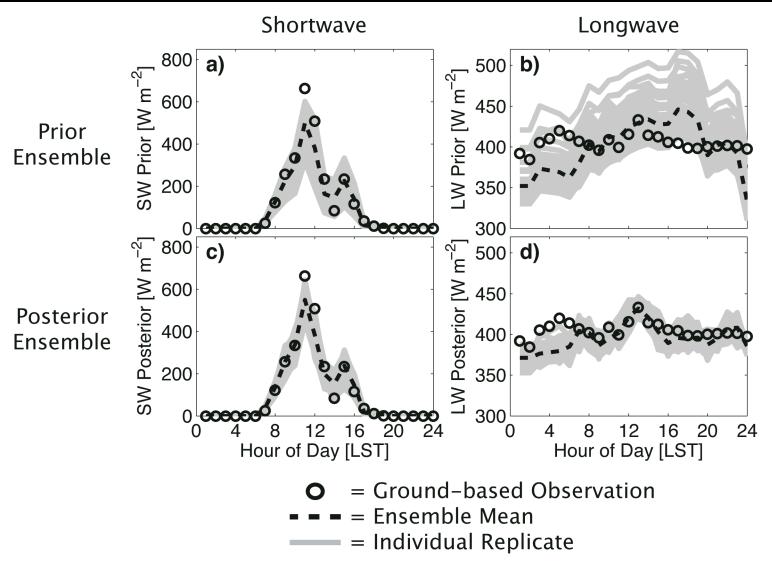






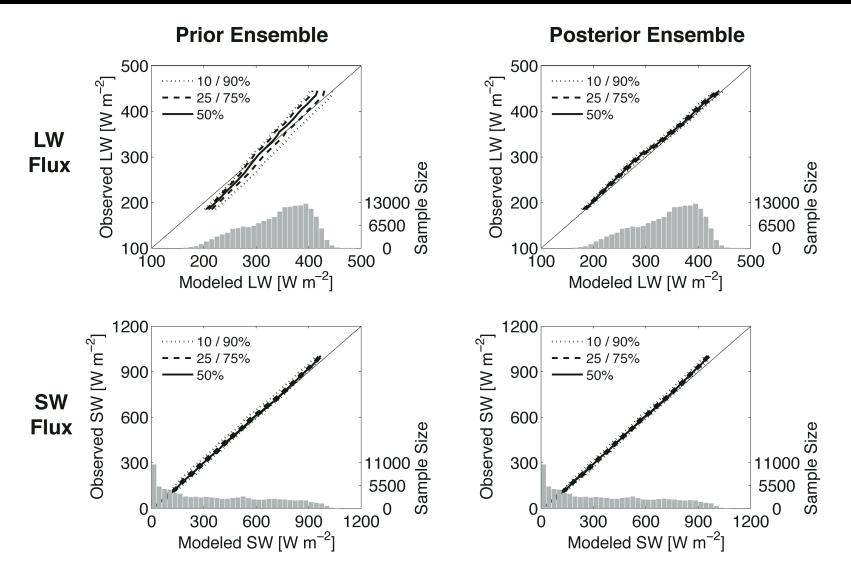
19-Aug-2004 06:00:00 [LST]

Prior vs. Posterior Uncertainty

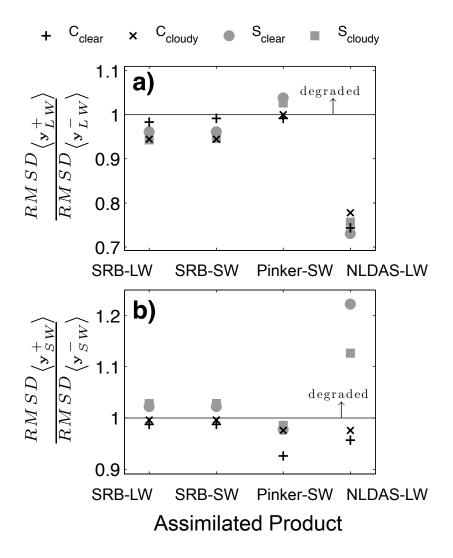


Forman and Margulis [Part 2, In Press]

Ensemble Comparisons



Prior Uncertainty Matters



Forman and Margulis [Part 2, In Press]

Summary of Findings

- Ensemble formulation implicitly contains the uncertainty
- Data assimilation framework adds utility
 - Increased accuracy relative to SIRS
 - Reduced uncertainty in posterior ensemble
 - Effectively downscales measurements
 - Interpolates in time (smoother only)
 - Adds value to existing measurements
 - Not site specific and flexible with non-Gaussian statistics and non-linear models

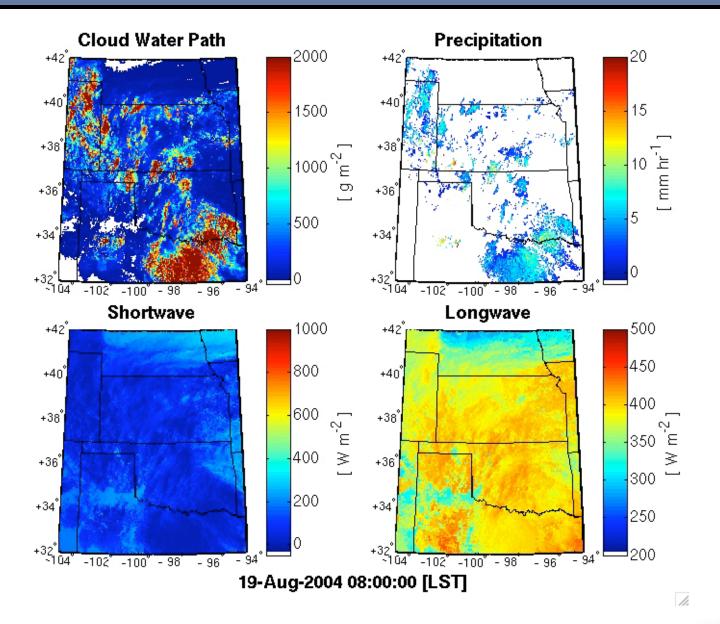
- Project Motivation
- II. Satellite-based Downwelling Radiation Model
- III. Ensemble-based Data Assimilation Scheme
- IV. Summary of Recent Research
- v. Future Work

Summary of Recent Research

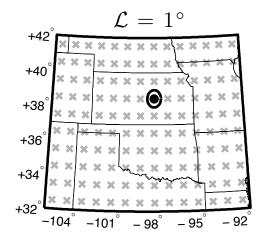
- Satellite-based Assimilation Framework
 - Global framework
 - Uncertainty implicit within ensemble
 - Cross-correlated, spatially-correlated
 - Capture complex spatiotemporal structure
 - Improved accuracy and reduced uncertainty
- Captures key modes (1st and 2nd moments)
- Applications include:
 - Hydrology and earth system science (rad. & ppt.)
 - Water resources management (ppt.)
 - Agriculture (broadband longwave rad.)
 - Renewable energy (broadband shortwave rad.)

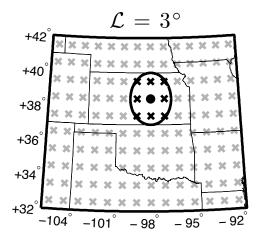
- Project Motivation
- II. Satellite-based Downwelling Radiation Model
- III. Ensemble-based Data Assimilation Scheme
- IV. Summary of Recent Research
- v. Future Work

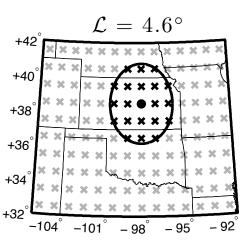
Ensemble Radiation and Precipitation



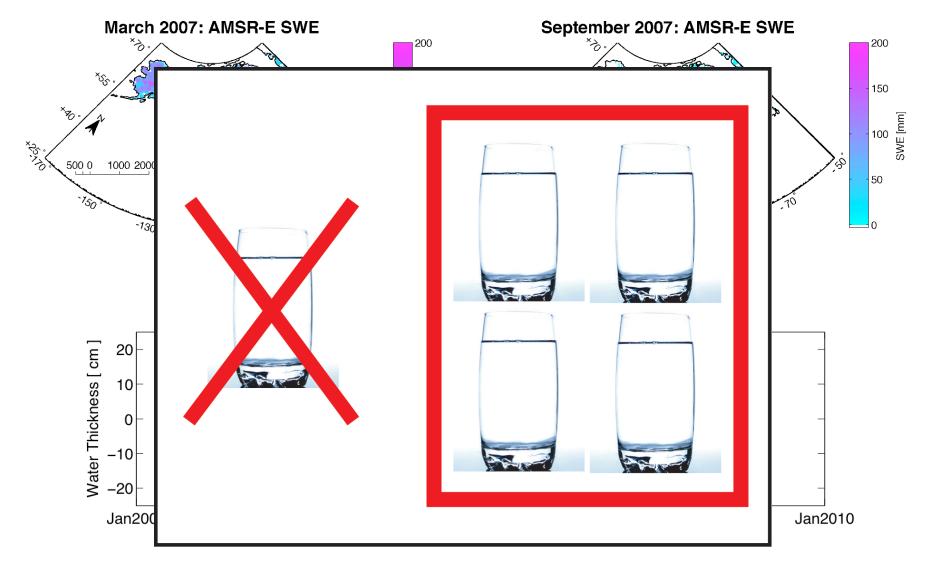
Horizontal Correlations in "2D" Filter







GRACE DA and SWE Estimation



Acknowledgements

- Professor Steven Margulis, Advisor
- NASA Earth System Science Fellowship
- Committee Members: Profs. Terri Hogue, Soroosh Sorooshian, and William Yeh
- UCLA Academic Technology Services (ATS)
- NASA Langley Research Center (LaRC)
- U.S. DOE Atmospheric Radiation Measurement (ARM) Program
- Oklahoma Mesonet Program

